Least Squares Universum Tsvm
نویسندگان
چکیده
Supervised learning problem with Universum data is a new research subject in machine learning. Universum data, which are not belonging to any class of the classification problem of interest, has been proved very helpful in learning. For data classification with Universum data, a novel quick classifier is proposed in this paper and named as least squares Universum twin support vector machine (LS-U-TSVM). The main advantage of the proposed method is that the running time is shorten greatly by using least squares technique. Experiment results indicate that the proposed LSU-TSVM is an effective and competitive classifier for data classification with Universum data.
منابع مشابه
Twin support vector machine with Universum data
The Universum, which is defined as the sample not belonging to either class of the classification problem of interest, has been proved to be helpful in supervised learning. In this work, we designed a new Twin Support Vector Machine with Universum (called U-TSVM), which can utilize Universum data to improve the classification performance of TSVM. Unlike U-SVM, in U-TSVM, Universum data are loca...
متن کاملWeighted Twin Support Vector Machine with Universum
Universum is a new concept proposed recently, which is defined to be the sample that does not belong to any classes concerned. Support Vector Machine with Universum (U-SVM) is a new algorithm, which can exploit Universum samples to improve the classification performance of SVM. In fact, samples in the different positions have different effects on the bound function. Then, we propose a weighted ...
متن کاملA Weighted Least Squares Twin Support Vector Machine
Least squares twin support vector machine (LS-TSVM) aims at resolving a pair of smaller-sized quadratic programming problems (QPPs) instead of a single large one as in the conventional least squares support vector machine (LS-SVM), which makes the learning speed of LS-TSVM faster than that of LS-SVM. However, same penalties are given to the negative samples when constructing the hyper-plane for...
متن کاملPractical Analysis of the Universum SVM Learning
The idea of ‘inference through contradictions’ was introduced by Vapnik[1] in order to incorporate a priori knowledge into the learning process. This knowledge is introduced via additional unlabeled data samples (called virtual examples or the Universum) that are used along with labeled training samples, to perform an inductive inference. For example, if the goal of learning is to discriminate ...
متن کاملExploiting Universum data in AdaBoost using gradient descent
Recently, Universum data that does not belong to any class of the training data, has been applied for training better classifiers. In this paper, we address a novel boosting algorithm called UadaBoost that can improve the classification performance of AdaBoost with Universum data. UadaBoost chooses a function by minimizing the loss for labeled data and Universum data. The cost function is minim...
متن کامل